

ACCELERATING ADOPTION OF CLIMATE TECHNOLOGIES IN THE AGRIFOOD SECTOR

ISTANBUL, 12th April 2019

Nuno Santos, Senior Economist, FAO

01 METHODOLOGY

- Background
- The 5 steps
- Objectives and criteria
- Assigning scores
- Key results

Background

FAO-EBRD collaboration on FINTECC

- First phase (2015-16):
 - Development of initial methodology study
 - Involvement of the International Energy Agency (IEA)
 - First pilot study in Morocco
- Second phase (2017-18):
 - Revising the methodology
 - Studies in Kazakhstan and Kyrgyz Republic

Food and Agriculture Organization of the United Nations

Adoption of climate technologies in the agrifood sector

Morocco Adoption of climate technologies in the agrifood sector

COUNTRY HIGHLIGHTS FAO INVESTMENT CENTRE

The 5 Steps

ANALYSIS OF EMISSIONS AND VULNERABILITIES

TECHNOLOGIES EVALUATED AND SCORED

LIST OF PRIORITISED TECHNOLOGIES

Mapping GHG emissions and adaptation priorities

Assessing technical and financial feasibility

Ranking and conclusions

Evaluating economy-wide impacts and sustainability

Evaluating support policies and barriers

Contribute to GHG emissions reduction and to increased adaptation to climate change in the agrifood sector

Identify drivers to support adoption

Identify technologies with significant potential

Objectives and criteria used for the core of the technologies assessment (Steps 2, 3 and 4)

		STEP 2		STEP 3
OBJECTIVES	2,0	TECHNICAL AND FINANCIAL To identify the most technically efficient and supported technology and to maximise the returns to individual investors.	3-+	ECONOMIC AND ENVIRONMENTAL To maximise net economic benefits
CRITERIA		Performance compared to best practice		Potential to reduce annual GHG emissions
	O	Maturity of technical support services	5	Contribution to adaptation
		Current technology adoption rate		Mitigation cost
		Trends in gap between uptake and potential		Negative externalities
		Financial returns		Positive externalities

STEP 4

INSTITUTIONAL

To pursue technologies with the lowest reform threshold

Policy reform requirements

Implementing the methodology Facilitating public-private dialogue for technology adoption

- Local team set up in collaboration with international experts
 - Usually Ministry with environment/agriculture mandate
- List of technologies can be expanded as needed
- Using the same analytical principles can be done as a quick assessment or an in-depth study (from Kyrgyz Republic to Ireland)
- Mitigation vs Adaptation
- Incorporating land use issues

Assigning scores to criteria Technical and financial assessment (Step 2)

STEP	CRITI	ERIA	SCORING	ABSOL
TECHNICAL & FINANCIAL		Performance compared to best practice	4	Qualitati
		Maturity of technical support services	3	Qualitati
		Current adoption rate	14%	Quantita potentia
		Trends in gap between uptake and potential	3	Qualitati
		Financial returns	22%	Quantita financial

UTE SCORE explained

ive: Likert scale 1 – very low to 5 – very high

ive: Likert scale 1 – very low to 5 – very high

ative: estimated current adoption rate in % of technical

ive: Likert scale 1 – very low to 5 – very high

ative: estimated internal rate of return (IRR) from models using market prices

Absolute scores QUANTITATIVE or QUALITATIVE

Assigning scores to criteria

Economic and institutional assessment (Step 3 and 4)

STEP	CRITE	RIA	SCORING	ABSOL
ECONOMIC & ENVIRONMENTAL		Potential to reduce annual GHG emissions	4 KtCO ₂ eq	Quantita equivale adoption
	5	Contribution to adaptation	4	Qualitati
		Mitigation cost	-545 USD/tCO ₂ eq	Quantita emission
		Negative externalities	3	Qualitati
		Positive externalities	4	Qualitati
		Policy reform requirements	2	Qualitati

UTE SCORE explained

ative: estimated absolute amount of emissions in CO₂ nt that could be reduced at full estimated technical

ive: Likert scale 1 – very low to 5 – very high

ative: estimated USD per ton of CO₂ equivalent ns where USD is based on estimated NPV of adoption

ive: Likert scale 1 – very low to 5 – very high

ive: Likert scale 1 – very low to 5 – very high

ive: Likert scale 1 – very low to 5 – very high

Results obtained from the process Policy dialogue and investment opportunities

- Focused policy dialogue and knowledge exchange
 - Debate on GHG emissions from the sector and priorities
 - Which technologies have greatest potential for GHG reduction
 - What type of support is needed => themes for policy reform
- Tool for donors and IFIs strategic work at country level
- INDCs
- Analysis can help inform financial products development

STEPS

Mapping GHG emissions and adaptation priorities

Assessing technical and financial feasibility

Evaluating economy-wide impacts and sustainability

Evaluating support policies and barriers

Ranking and conclusions

02 EXAMPLE OF APPLICATION TO KAZAKHSTAN

- Analytical details
- Final ranking of technologies
- Investment opportunities

Total emissions relative to total GDP High country emissions relative to GDP, below regional levels and in net decline

Agriculture emissions relative to agriculture GDP Agricultural GHG intensity value lower than region

Value and share of agriculture emissions Small share of total emissions and approximately stable

Kazakhstan, value and share of agriculture emissions in total GHG emissions, 2000-2010

Average share for OECD countries, 2000-2010

Key emitting agriculture activities in Kazakhstan

Trends in emissions from agriculture activities, thousand tCO2eq, 2000-2016,

The share of **livestock** emissions over total agriculture emissions increased from 61% in 2000-2002 to 73% in 2014-2016

- Synthetic Fertilizers
- Rice Cultivation
- Organic soils
- Manure Management
- Manure left on Pasture
- Manure applied to Soils
- Enteric Fermentation
- Cultivation of Organic Soils
- Crop Residues
- Burning Savanna
- Burning Crop residues

Estimated technology adoption rates Adoption rates indicate significant potential for technology uptake

Estimated investment size USD 2.3 billion in base case scenario of investment needs for full adoption

DRIP IRRIGATION 4%

Estimated investment size and mitigation potential Major differences across technologies

Zooming in specific technologies (1)

Conservation agriculture			
CURRENT ADOPTION	POTENTIAL ADOPTION	POTENTIAL	
36% of estimated	7.2 million ha	INVESTMENT	
potential - 2.6 million ha	40% of total cereal, oil and leguminous crops area	USD 263 million	2.3 ı
Drip irrigation			
CURRENT ADOPTION	POTENTIAL ADOPTION	POTENTIAL	
31% of the estimated area	29,000 ha and up to	INVESTMENT	
(where drip can have	250,000 ha (inc.	USD 83 million	24,0
mitigation benefits)	adaptation)		
9,000 ha			
Efficient field Machinery			
CURRENT ADOPTION	POTENTIAL ADOPTION	POTENTIAL	l
16% of the needed fleet	69,000 tractors	INVESTMENT	
	25,000 harvesters	USD 1 billion	26

POTENTIAL GHG REDUCTION

million tCO2eq/year

POTENTIAL ADAPTATION

USD 250 million

POTENTIAL GHG REDUCTION

000 tons CO2eq/year

POTENTIAL ADAPTATION

USD 112 million

POTENTIAL GHG REDUCTION

260,000 tCO2eq/year

POTENTIAL ADAPTATION

USD 63 million

Zooming in specific technologies (2)

Improved greenhouses

CURRENT ADOPTION

13% of estimated greenhouse area – 20 ha

POTENTIAL ADOPTION

Around 150 ha and up to 300 ha including new greenhouses

POTENTIAL INVESTMENT	
USD 4 million	45

POTENTIAL GHG REDUCTION

122,000 tCO2eq/year

POTENTIAL ADAPTATION

USD 10 million

POTENTIAL GHG REDUCTION

,000 tCO2eq/year

POTENTIAL ADAPTATION

USD 1 million (*)

Technical and financial assessment details (Step 2) Summary for crop farming technologies

STEP	CRITERIA	HIGHLI
TECHNICAL & FINANCIAL	Performance compared to best practice Scores: 4 (PA and Drip) and 3 (CA, FM and GH)	 The five technologies are avained and Drip: imported technologies In CA, FM and GH: farmers in Belarus and China (thermocol costly and difficult to maintal)
	Maturity of technical support services Scores: 4 (Drip), 3 (CA, FM and PA) and 2 (GH)	 Technical support services example and efficient for drip and available and efficient for drip and available and efficient few distributo
	Current adoption rate Range from 82% (FM), 36%(CA), 31%(Drip), 17% (PA) and 13%(GH)	 Quite low in GH and PA (13 a for deployment Moderate in CA (36%) and d assumptions of potential are
	Trends in gap between uptake and potential Scores: 4(GH), 3 (CA, FM, PA) and 2 (Drip)	 GH: For the last 5 years arou 2021. Trend in construction of CA, FM and PA: The gap is la Drip: Potential for installing of the second sec
	Financial returns Range from 27% (PA), 22% (CA and drip), 21%(GH) and 13% (FM)	 Very good financial returns t moderate returns because of when investing in regionally

GHTS

ailable and perform well when compared to IBP chnology is closer to IBP (imported from Europe and US) mainly use implements imported from Russia and over). Most FM technology is available but it is more ain

xist for all the five technologies. They are widespread ailable but not widespread for **CA, FM and PA**. For ors provide the services for maintenance.

and 17%, respectively) suggesting significant potential

Irip (31%) and high in **FM** due to conservative eas for adoption

and 90 ha of industrial GHs built and additional 150 by of more GH will not change

arge and has not been decreasing

drip irrigation is expected to grow!

to investments in **PA, CA, Drip and GH**. **FM** presents of limited diesel savings and reduction of harvest losses produced machinery.

Economic and institutional assessment (Step 3 and 4)

STEP			
ECONOMIC & ENVIRONMENTAL		Potential to reduce annual GHG emissions	The five technologies comb mitigation. CA has the large consumption and soil carbo
	S	Contribution to adaptation Scores: 5 (drip), 4 (CA and GH) and 3 (FM and PA)	Adaptation benefits of USD FM represent most of the o were additional agricultura
		Mitigation cost From USD.tCO2eq : -4 (GH), -11 (CA) -51 (PA), -60 (drip), -400 (FM)	FM shows a high negative r returns on adoption and lor USD/tCO2eq), PA (-51 USD/ USD/tCO2e).
		Negative externalities Scores: 5 (PA), 4 (CA, GH), 3 (FM and drip)	CA: Possible increases in he footprint of new tractors/h and others
		Positive externalities Scores 4 (all)	All technologies will increase aggregate savings in water
		Policy reform requirements Score: 2 (CA), 3 (PA, GH) and 4 (Drip and FM)	Policy reform range from ve and FM. The principle obsta knowledge and information and cost of capital for smal

pined represent 40% of the total potential estimated est GHG mitigation potential due to lower fuel on sequestration.

9 436 million were quantified for these 5 techs. **CA and** quantified benefits. Main quantified adaptation benefits Il production, water availability and energy availability

mitigation cost (-400 USD/tCO2) driven good economic w mitigation potential. It is followed by **drip** (-60 /tCO2rq) , CA (-11 USD/tCO2eq) and **improved GH** (-4

erbicide use in the short term; **FM**: Manufacturing narvesters; **Drip:** Labor impacts can be negative; tubing

se food security in the long tem. Drip can lead to with appropriate regulatory/institutional setting.

ery high in **CA**, moderate in **PA** and **GH** and low in **Drip** cacles to the adoption of these five technologies are n, regulatory and institutional issues and access to credit ller farmer (except for PA)

Estimated simplified MACC

Pasture improvement with low mitigation cost and very high potential

Technology ranking (mitigation oriented scenario) Weights, weighted scores and prioritized list

Technology ranking (Financial return oriented scenario) Weights, weighted scores and prioritized list

Mitigation costs, potential and weighted scores Bubble size proportional to mitigation potential (ktCO2eq/year)

Pasture improvement

90 100 80

Technology tree

BIOGAS FROM MANURE

VERY HIGH POTENTIAL BUT INSUFICIENT GOVERMENT SUPPORT FOR A RAPID DEVELOPMENT Inefficient use of exisitng tech; premium for electricity generation is not enough to cover investment Servicing companies and manure management are pre-requirments for technology deployment

WIND WATER PUMPS

HIGH POTENTIAL IN REMOTE AREAS WITH ADAPTATION BENEFITS

- Very good financial return due to public support meassures
- Only interesting in areas where electicity is not available

STEAM BOILERS

PROMISING BUT ADOPTION LINKED TO AGRIFOOD SECTOR TRANSITION Good returns and moderate mitigation benefits • Limited number of food enterprises

SMALL DAMS

HIGH DEMAND TO PREVENT FLOODS AND IRRIGATE, BUT REQUIRES LONG-TERM INV. • Negative financial returns due to high up-front investment and low level of water tariffs Development of fisheries, tourism, recreational services, biodiversity improvements

PRECISION AGRICULTURE

PASTURE IMPROVEMENT

DRIP IRRIGATION

ONLY A MITIGATION TECHNOLOGY IN SPECIFIC SITUATIONS

 Significant adaptation benefits if water scarcity and with appropriate governance • Water/groundwater legislation, clear targets and incentives for water-saving

FIELD MACHINERY

GOOD POTENTIAL FOR FLEET RENOVATION

- Moderately good mitigation benefits through diesel savings
- Access to capital and availability of best technology concerns

CONSERVATION AGRICULTURE

VERY HIGH POTENTIAL FOR MITIGATION AND ALSO ADAPTATION

· Good financial returns; knowledge disemination and widespread support services needed

Although an initial boom, policy reform and financial support needed to foster adoption

IMPROVED GREENHOUSES

LIMITED MARKET POTENTIAL BUT INTERESTING GREENING BENEFITS Financially atractive for industrial greenhouses that operate the entire year Vast government support and incentives may lead to new areas

EFFICIENT FATTENING UNITS

TACKLING LIVESTOCK PRODUCTIVITY ISSUES

- Good financial returns; can support sector modernization
- Capacity utilization is crucial for financial profitability

GOOD POTENTIAL AREA SERVED BY FIELD MACHINERY EQUIPPED WITH TECH Excellent financial returns due to less wasted seed, fertilizer, fuel, and time Demonstration farms and activities on promotion of technology are needed

VERY HIGHT POTENTIAL FOR CARBON SEQUESTRATION High priority for a sustainable development of livestock sector Setting national targets towards the recovery of degraded pasture needed

03 IN SUM

- Tool to support deployment of green technologies in the agrifood sector
- Provides basis for dialogue on sector emissions and vulnerabilities to Climate Change
- Identifies promising green technologies and can track adoption rates
- Provides insights into policy themes that may need to be addressed for accelerated tech adoption

Kazakhstan-agriculture employment and value added Sector plays an important role in employment

• TJK